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Within the existing phenomenological theory of an adiabatic process it is implicit that the
system is characterized by a temperature at any moment. However, since in this process there is
no thermostat, the probability distribution in general would not be canonical. In this paper we
find the distribution corresponding to an adiabatic process, being based on the commonly accepted
statement that the equilibrium state of a system with a fixed energy is the one characterized by
the microcanonical distribution. We show that (i) for a system with constant heat capacity, which
is typical in the classical limit, the distribution in an adiabatic process is canonical, despite the
absence of thermostat, and (ii) in the general case the mean value of energy in the thermodynamic
limit for an adiabatic process is the same as that calculated using the canonical distribution, but its

fluctuation is different.

PACS number(s): 05.20.—y, 05.30.—d, 05.40.+j

I. INTRODUCTION

In the commonly accepted approach, the statistical
theory of all equilibrium thermodynamic processes is
based on the relation between the free energy and the
partition function FF = —T In Z, which implies the pres-
ence of the Gibbs canonical distribution. The latter takes
place for a system in a thermostat. At the same time,
in the case of an adiabatic process, i.e., a process in an
adiabatically isolated system, the thermostat is absent.
Therefore, within statistical theory, the adiabatic process
demands special consideration.

Indeed, in accordance with the aforesaid, in the exist-
ing statistical theory there is the consideration of a pro-
cess which can be naturally called zero polytropic: the
thermostat is present (because the distribution is canon-
ical), but 6Q = 0, so that the heat capacity ¢ = 0, hence
the name. The results are transferred onto the case of
the “true” adiabatic process (for which 6Q = 0 due to
the absence of thermostat); however, not only is the fact
of such transference ignored, but also the understanding
of the existence of two a prior: different processes—zero
polytropic and adiabatic—is absent.

In statistical thermodynamics a process is character-
ized by a family of distributions. In each point of a
zero-polytropic curve the distribution is canonical; but
for an adiabatic curve this is by no means obvious—and
in general not true. In order to find the distribution cor-
responding to a point of an adiabatic curve, an evolution
equation is needed, which should in principle follow from
the underlying dynamical equations. The equations, gen-
erally speaking, are not known. However, it is accepted
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that a system with fixed energy, left by itself, eventu-
ally comes into an equilibrium state characterized by the
microcanonical distribution. One can conclude that the
evolution of the probability distribution is essentially the
equalization of probabilities within energy levels. If levels
cross as a result of changing external parameters, there
should be such equalization at each crossing, provided the
process is slow enough that there is time for the equilib-
rium to be reached. Otherwise the probabilities are to
remain constant for each level due to the adiabatic theo-
rem.

Accepting the above picture and given the dependence
of the whole spectrum on the external parameter(s), one
can find the adiabatic distribution. Here we will carry
out an extended consideration and compare the results
for the adiabatic and zero-polytropic processes. The rest
of the paper is organized as follows. Section II is de-
vbted to a detailed discussion of the definitions of the
two processes. In Sec. III we recite the microcanonical
postulate, which is essentially equivalent to the common
statement that a system by itself comes into a micro-
canonical state. Section IV describes how the probability
distribution behaves in an adiabatic process being based
on this postulate. In Sec. V the quasicontinuous spec-
trum approximation is introduced and the equation for
the distribution is derived. This has the form of a wave
equation; its solution is constructed in Sec. VI and the
question about when it coincides with the zero-polytropic
(canonical) distribution is addressed in Sec. VII. Sections
VIII and IX contain our main results: In Sec. VIII it is
shown that the mean values of energy in the thermo-
dynamic approximation are equal for the adiabatic and
zero-polytropic processes and in Sec. IX it is shown that
the fluctuations for the two cases in general differ from
each other. We summarize and discuss our results in Sec.

X.
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II. ZERO-POLYTROPIC PROCESS VERSUS
ADIABATIC PROCESS

In the phenomenological description of equilibrium
thermodynamic processes, it is always meant that a sys-
tem possesses a temperature at any moment. A state
of the thermodynamic system is then completely deter-
mined by the set of external parameters a = (ay,...,ax)
and the temperature T'; a process is determined by a
function T'(a) [time usually does not figure, but one may
add a(t), if necessary].

However, arbitrary manipulations with the system can,
generally speaking, force it into a state not characterized
by temperature. For the system to have a temperature at
any moment, one uses a thermostat—a system of much
bigger size which is itself in equilibrium and can exchange
energy with the system under consideration. The result
of an interaction with the thermostat is, on the one hand,
that the system receives from it a (positive or negative)
amount of energy in the form of heat AQ = f §Q and,
on the other hand, that it is at any moment in a state
characterized by the canonical distribution.

Now imagine a process during which the system inter-
acts with the thermostat but

6Q = 0. (2.1)
Since in this case the heat capacity ¢ = % = 0, it is
natural to call the process zero polytropic (recall that a
polytropic process is one with constant heat capacity).
For a reversible process, Eq. (2.1) is equivalent to
dS =0. (2.2)
Knowing the partition function of the system for any a,
one may regard this as a differential equation from which
the a dependence of temperature is to be determined.
Given the initial condition T |q=q, = T0o, one obtains the
equation of zero-polytropic curve
T = Tz(a, G,(),To). (23)

On the other hand, a process can be considered which
involves no thermostat at all. A system whose interaction
with the environment consists only in the change of its
external parameters is usually referred to as adiabatically
isolated and a process in such a system is called adiabatic.
For this process (2.1) also takes place, but then the fol-
lowing question arises: Does this imply that everything
will be the same for adiabatic and zero-polytropic pro-
cesses, that is, will the adiabatic probability distribution
be canonical with the temperature as given by (2.3)?

We know that usually even the question itself is not
posed; namely, (2.1) is said to define the adiabatic process
and (2.3) is referred to as its equation. But, as mentioned
above, since for the adiabatic process the thermostat is
actually absent, there is no a priori reason to presuppose
that the corresponding distribution would be canonical.
Therefore the question itself makes sense—and we will
see in what follows that in general the answer to it is
negative.

III. THE MICROCANONICAL POSTULATE
AND EQUILIBRIUM DISTRIBUTION

A quantum-mechanical system of finite size possesses a
countable set of (pure) stationary states. It is customary
to arrange those states into energy levels, so the complete
set of pure states is {w;,: s =1,...,4;;1=0,1,2,...},
where the energy eigenvalues ¢; = w;,(H) do not depend
on s and g; is the degeneracy of lth level. Further, there
are mixed states of the form

w = Zw;,wh, (3.1)
ls

where w;; is the probability of the system being in the
state w;,. The probabilities satisfy w;, > 0 and the nor-
malization condition

> w, =1 (3.2)
ls
The mean value of energy in the state (3.1) is
E = Zwlae, (3.3)
ls

and the entropy is

S=- Zw,s In Wig (3.4)
ls

(k=1).

In the case of a time-independent Hamiltonian, in von
Neumann dynamics for the statistical operator, any state
of the form (3.1) is stationary (that is, it does not change
with time). However, for thermodynamic systems the fol-
lowing statement is commonly accepted: Given a fixed
energy, that is, if w;, ~ i1, a “true” stationary—usually
called equilibriumm—state is only that with w;, not de-
pending on s or, taking into account the normalization
condition, with

Wig = i—(le. (35)
gL
The distribution (3.5) is known as the microcanonical
distribution. The time evolution of a system with fixed
energy brings the system eventually to a “microcanoni-
cal state” in which (3.5) takes place. Such an evolution
is not described by Schrodinger dynamics, but rather by
an indeterministic dynamics [1,2]; the statement that the
microcanonical state is an equilibrium state is essentially
considered a generalization of experimental facts. (En-
tropy increases during irreversible time evolution and the
microcanonical state corresponds to the maximum of en-
tropy for a fixed energy.)
Consider now an arbitrary state of the form (3.1). One
can rewrite w as

w =Y Wi, (3.6)
l

where

(3.7)

Wl: E Wisg,
8
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Wig

Q= —— Wi,
1 sVVlw’

(3.8)

Clearly, ; is a state with fixed energy (a mixture of
states belonging to the same level, w;,/W; being the
conditional probabilities) and {W;} is the distribution
over levels. What will be the time evolution of w? We
know already that €; evolves into the corresponding mi-
crocanonical state; now, conservation of energy means
that there can be no transitions between different levels,
therefore W;’s do not change. In other words, a state
(3.1) evolves in such a way that the distribution over
levels does not change, but the distribution within each
level is equalized. That is, a state of the form (3.1) is an
equilibrium state if and only if w;,x = w,~ takes place
for each I,s’,s"”. The statement above can be naturally
called the microcanonical postulate [2]. We stress once
more that actually it means nothing but the common
statement about a system evolving into a microcanonical
state, with the only addition that the exact energy is not
known.

For a closed system, an arbitrary distribution {W;}
over levels corresponds to an equilibrium state (provided
that wj, = wyen takes place). However, there is an im-
portant case of a system interacting with a thermostat
(recall that the interaction energy is usually neglected).
In this case it is known that for the system there will be
the canonical distribution, that is,

F— €]
T b
where the free energy F' is determined from the normal-

-1
ization condition and the temperature is T = (%2)

[3], where S(FE) is the entropy of the thermostat in the
microcanonical state with energy E: S(E) = lnG(E),
G(E) being the degeneracy of the level with energy E.
This distribution corresponds to the maximum of entropy
for a given mean energy.

Note finally that for a macroscopic system g; is a
rapidly increasing function of energy (typically like €,
where N is of the order of number of particles) and
therefore for a canonical distribution W; = gyw;, is a
sharp-peaked function—similarly to the microcanonical
case when it is a § function. This makes the two distri-
butions equivalent in the thermodynamic limit for calcu-
lating mean values, but certainly not for fluctuations.

wy, = exp [ (3.9)

IV. ADIABATIC PROCESS
AND LEVEL CROSSINGS

It is usually assumed that the Hamiltonian and cor-
respondingly the energy levels depend on the external
parameters

e =¢(a), a=(a,...,ax). (4.1)
In a process, both a—and correspondingly ¢;—and the
probabilities w; change. For a given quasistatic pro-
cess the probabilities “follow” the external parameters,
so there are the dependences w;(a). To calculate these,

one has, generally speaking, to solve the dynamical equa-

tions taking into account the behavior of the system itself
and its interaction with the environment, which is surely
impossible for a macroscopic system. If, however, a ther-
mostat is present (as it is for a zero-polytropic process),
then as a result of the interaction with it the distribution
is canonical at every moment,

©(g) — F(a) — a(a)
w;” (a) = exp [W , (4.2)
where T'(a) is a given function which is fixed by the ther-
mostat.

Now assume that the initial distribution is canonical,

Fy — e,(ao)] ’

T (4.3)

wi(ao) = exp [

and a quasistatic adiabatic process (in the thermody-
namic sense) is carried out. If there are no level cross-
ings, then the quantum-mechanical adiabatic theorem [4]
holds and one has

w® (a) = wi(ao) (4.4)

(transitions between levels are absent). The question is:
Does w,(ad)(a,) = 'w,(c)(a) take place? By comparing (4.2)
and (4.3) it is easy to see that it does if and only if one
can write €;(a) as

a(a) = &A(a) + v(a) (45)

for all l; substituting this and

Aa) a) = —v(a M v(a
A(ao)’ F()—'[FO (0)] + ()

T(a) = T() A(ao)

(4.6)

into (4.2) leads just to (4.3). Actually, T'(a) here will be
the same as in (2.3) for the zero-polytropic curve. Thus,
for the adiabatic distribution to be canonical-—and for
the adiabatic curve to coincide with the zero-polytropic
one—the a dependences of ¢; have to be rather strongly
correlated (! figures only in the a independent &;’s); in
essence, only shifting and extending (squeezing) the spec-
trum as a whole is allowed. Clearly, for an arbitrary set
of functions ¢;(a) one cannot satisfy an infinite number of
equations (4.5) at any a by choosing only two values A(a)
and v(a); thus wl(ad)(a,) in general differ from 'wl(c) (a).

A special consideration is required if level crossings
occur for some a = a., that is, if

ey(act) = elu(acr) ) ll 76 l” . (47)

Note that in this case Eq. (4.5) certainly cannot be ful-
filled because together with (4.7) it would imply € (a) =
€ (a) for all a, which means I’ and I" refer to the same
level. Before the crossing, the values wy(a. — 0) and
wyr (acr — 0) would in general be different. But the mi-
crocanonical postulate, once accepted, tells us that at the
moment of crossing the probabilities for all the states be-
longing to the levels I’ and !” should become equal. This
implies that after the crossing one will have
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wp(acr -+ 0) = wln(ac, =+ 0)
gl’wl’(acr - 0) + gurwyn (a'cr - 0)
gv + qu

(4.8)

Thus in an adiabatic process the probability correspond-
ing to a certain level remains constant so far as there are
no crossings, but changes according to (4.8) at a cross-
ing. Note that in fact two conditions of slowness are
implicated here: First, the process has to be slow enough
for the adiabatic theorem to be applicable and second,
enough time has to be provided for the equalization as
in (4.8) to accomplish. The latter means that due to a
small interaction with the environment, which, strictly
speaking, is always present, the levels have a small but
finite width and, on the other hand, equalization occurs
not at the mathematical point of level crossing, but in its
small vicinity; so the process should be slow enough for
the time when € (a) and €+ (a) are close enough to ex-
ceed the time of equalizing. In what follows we will make
no estimates of speed, but just assume that the process
is slow enough to meet both conditions.

We conclude from what has been said so far that
the adiabatic process in general differs from the zero-
polytropic process. Furthermore, it is clear from (4.8)
that whenever wy (ac; —0) # wyp(acr —0), there is an en-
tropy increase at the crossing (while in a zero-polytropic
process entropy is constant by definition). Any other spe-
cific conclusions demand additional information on the
functions € (a).

V. QUASICONTINUOUS SPECTRUM:
THE WAVE EQUATION

When considering thermodynamic systems it is usually
safe to assume that level spacing is small enough so that
summation over levels may be replaced by integration.
This is the essence of the quasicontinuous spectrum ap-
proximation. (It should be stressed that the spectrum is
discrete and the wave functions are normalizable; in fact,
we only introduce a more convenient way of counting.)
Instead of g;’s, the density of states G(¢, a) is introduced,
which is a continuous function such that G(e,a)Ae is the
number of states whose energy is in a narrow interval
[e— A€/2,e+ Ae/2]. The probability distribution is char-
acterized by a function w(e,a), w being the probability
of the system being in a pure state with energy e (but
not the probability density). The equalities (3.2)—(3.4)
become

/000 G(e,a)w(e,a)de =1, (5.1)
E-= /0  Gle, ayw(e, a)e de, (5.2)
— /0°° G(e,a)w(e, a) Inw(e, a) de. (5.3)

We will now derive the equation that, for an adiabatic
process, is satisfied by w(e,a). In a discrete spectrum,
there is still the set of functions ¢;(a). Consider an
infinitesimal interval [¢ — Ae/2,e + A€/2]. It contains

G(€,a)Ac states in total; let L(e, Ae,a) = {l: ¢(a) €
[e — Ae/2,e + A€/2]} be the set of numbers of relevant
levels. The probability for the system to occupy one of
these states is w(e,a). Now, at a previous moment the
energy of the lth level was ¢(a — da) = ¢(a) — vi(a)da,
where v;(a) = de;(a)/da, and the corresponding proba-
bility was w(e — vi(a)da,a — da). In the spirit of (4.8)
one gets

Z giw(e — vi(a)da,a — da)
l€L(e,A€,a)
> @

leL(e,Ae,a)

w(e, a) = (5.4)

Expanding w in the numerator and taking into account
that the denominator is G(e,a)Ae, one comes to the
equation

Ow(e, a)

aw(e a)
(90) _ (e, 2200

(5.5)
where

u(e, a) = qivi(a). (5.6)

1
" G(e,a)Ae Z

leL(e,A€,a)

An equation of the form (5.5) is known as a wave equation
and u(e, a) is called the wave velocity. Equation (5.6) can
be used to determine the wave velocity if the whole set of
functions ¢;(a) is known. (Clearly, the sum on the right-
hand side will be proportional to Ae for sufficiently small
Ae.) However, in the quasicontinuous spectrum approx-
imation it is sufficient to know just G(e,a). Indeed, let
us introduce the quantity G(e,a) = foe G(€',a) de’, which
is the number of states whose energy does not exceed
€. Let there be some value v and consider those levels
for which v;(a) = v. As a changes by da, the states
whose energy belongs to the interval [¢e — v da, €] leave (if
v > 0) or enter (if v < 0) the interval [0, €]; the quantity

- d
of such states may be written as JvA_a[ Ezec(;)m;) g1 (the
vi(a)=
sum is the quantity of states in the interval of width Ae,
hence the prefactor). Thus the change in G(¢,a) equals

—ﬁ(z,ec(e,m,a) giv)da. To obtain the total change of
vi(a)=v
G(e, ) one should sum over all possible values of v; thus

g o) = L E,ec(é’Ae,G) givi(a) and consequently

8G(e a)
u(e,a) = G(e 2) /

Note that if it is given that w(e, a) obeys the wave equa-
tion with a velocity that does not depend on w(e, a) itself,
then the expression (5.7) follows directly from the nor-
malization condition. Indeed, differentiating (5.1) with

respect to a and substituting Q%Z’—az from (5.5) yields

* 8G(€,a)
A T’LU(E, a) de

(5.7)

Bw(e a)

/ G(e,a)u(e,a)——= =0 (5.8)



or

Lw {% - % [G(e, a)u(f,a)]} w(e, a) de = 0.
(5.9)

Since the previous consideration of the adiabatic process
allows w(e, a) to be arbitrary, it follows that

0G(e,a) 0

a e [G(e, a)u(e, a)];

(5.10)
this immediately implies (5.7).

Finally, note that if ¢(x) is an arbitrary differentiable
function and w(e, a) is a solution of the wave equation,
then ¢(w(e, a)) is also a solution. Therefore the quantity

®(a) = Aw Gle, a)p(w(e, a)) de (5.11)

does not depend on a, i.e., d®/da = 0, by the same rea-
son as for the normalization integral (5.1). In particular,
choosing ¢(z) = —zInz yields

ds

da = 0; (5.12)
entropy is conserved for an adiabatic process in the qua-
sicontinuous spectrum approximation. This does not of
course contradict what has been said earlier. Briefly, it
means that if one considers the level spacing to be an
infinitesimal quantity of the first order, then the proba-
bilities corresponding to the two levels before a crossing
differ in the first order and therefore the entropy increase
at the crossing is of the second order (because the uniform
distribution corresponds to the maximum of entropy and
the change of a function near a maximum is of the second
order with respect to the change of its argument). The
total entropy increase then tends to zero together with
the level spacing.

VI. SOLUTION OF THE WAVE EQUATION

The wave equation is solved by the standard method
of characteristics [5]. Namely, consider an auxiliary dif-
ferential equation

g——z = —u(e,a). (6.1)
Its solutions form a family of curves in the (a,¢€) plane,
which are called characteristics of the equation (5.5).
Let us write down the equation of these curves as € =
x (€0, a0,a), where (ag,€p) is an “initial point” of the
curve. Since it does not matter which point is chosen
as initial, one has as well ¢g = x(€,a,a0). Then the gen-
eral solution of (5.5) is

w(e, a) = f(x(€ a,a0)) (6.2)

with arbitrary ap and f. If an initial distribution is given
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w(e, a)|a=ao = wo(€), (6.3)
then the corresponding particular solution is
w(e, a) = wo(x(€, a,a0)); (6.4)

it satisfies (6.3) because x(€, ag,a0) = €.

Any solution of the form (6.2) remains constant when
the point (a,€) moves along a characteristic—this is, in
fact, another definition of the latter. If there are no level
crossings, the characteristics are nothing but the func-
tions €;(a) for all the levels; so the probability is constant
for each level. If, however, level crossings are present, this
is certainly not the case.

VII. CANONICAL SYSTEMS

It has been established that the distribution corre-
sponding to an adiabatic process is obtained by solving
the wave equation. We turn now to our original question:
Under what condition is this distribution canonical? So
far we only know that in one particular case it is and in
general it is not. Let there be an initial canonical distri-
bution

wo(€) = exp [F"T: 6] ; (7.1)

then the two processes starting from it yield the two dis-
tributions: w(e, a) defined by (6.4) for the adiabatic pro-
cess and

w, (€, a) = exp [F — E] (7.2)

T

for the zero-polytropic process. Here T' = T,(a,ao,To)
as in (2.3). The question is: When does

w(e,a) = wy(e, a) (7.3)

take place?
Let us define the “zero-polytropic velocity” by the
equality analogous to the wave equation

Ow,(e,a)  Ow,(e,a)
8a R

(7.4)

It follows from the aforesaid that u,, unlike u, in general
depends on the initial condition u, = u,(€, a,a9,To). We
will now prove that Eq. (7.3) takes place if and only if

auz (6, a, ag, TO) =0

7.5
T, (7.5)

Proof. First note that Eq. (7.3) is equivalent to
u(e, a) = u, (€, a,a0,Tp). (7.6)

Since there is the equation (5.5) for w(e, a) and the equal-
ity (7.4) for w,(e,a) and the initial condition (7.12 is the
same for both, (7.6) implies (7.3). Since u = %2 /2w
and the same for u, and w,, (7.3) implies (7.6).

Now, if (7.5) is not fulfilled, (7.6) and therefore (7.3)
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cannot be true. On the other hand, let (7.5) be fulfilled.
First we will show that in this case

Ou,(€,a,a0,To)

e 0 (7.7)

also holds. Indeed, the two points (ag,7o) and
(a,T.(a,a0,To)) in the (a,T) plane belong to the same
zero-polytropic curve and it does not matter which one
of them is considered initial. Hence

u, (€, a,a0,To) = u;(e,a,a,T;(a,ao,T)), (7.8)
from which (7.7) immediately follows upon differentiat-
ing with respect to ag and using (7.5). So one can write
u,(€,a,a9,To) = u,(€,a). Further, there is the equality
(5.8) for w(e,a) and the analogous one, with u(e,a) re-
placed by u, (€, a), for w;(€,a). At a = ag the first terms
on the left-hand sides of both equations coincide and one
can equate the second terms; taking into account the ini-
tial condition (7.1), one gets

/0°° exp [_Tio] G(e, ao) [u(e, ao) — uz (€, ao)] = 0. (7.9)

The left-hand side is the Laplace transform of the func-
tion G(e, ao) [u(€, a0) — u, (€, ap)] with respect to €; since
To may be chosen at will, the function itself must vanish.
Formally replacing ao (which is also arbitrary) by a, one
has u(e,a) = u,(¢,a). Q.E.D.

One now derives the explicit expression for u, in order
to see when it does not depend on T,. Equation (7.2)
can be rewritten as

(7.10)

E—e¢
w,(€,a) = exp [—S+ T },

where F = E(a,T) is the mean energy and the entropy
S = const. Therefore

Ow,(e,a)  w,(e,a)
9 = T (7.11)
Ow, (¢, a) 9 (E—c¢
e AG .
8E | 8E dT dT
8E | OEdT\mp _ dT (p _
=wz(e,a)(aa+a a)Tz da ( 5)’
(7.12)
and
dT (E—€¢ OE OF
Uz(f,a,ao, TO) = E ( T - ﬁ) - % (713)

[recall that T = T,(a, ao, To) is meant here].

Let us call a system “canonical” if (7.5) is fulfilled for
it. In a canonical system, an adiabatic process start-
ing from a canonical distribution will completely coincide
with the corresponding zero-polytropic process, despite
the absence of a thermostat in one case and its presence
in the other one. We already know one example of a
canonical system—the one for which (4.5) is fulfilled; to
verify (7.5) in this case is a matter of straightforward cal-
culation. Another important example is a system with

E(a,T) = T + ¢(a), (7.14)
which holds in the classical limit for a system with
quadratic degrees of freedom, when the theorem of uni-
form distribution of energy over degrees of freedom takes
place, with the possible addition of the static energy of
interaction (as in the van der Waals gas). Indeed, since
the mean energy is expressed in terms of the partition

function as E = T2212Z (7.14) implies

InZ =clnT — ? —c¥(a),

(7.15)

where ¥(a) is a function determined independently of ¢
and ((a). Then

7]

TInZ)=c(InT — ¥(a) + 1) (7.16)
and the equation of zero-polytropic process S = const

implies

Tz (a, Qag, Tg) = T() exp [‘I’(Q) - ‘I/(ao)] H (717)
substituting this and (7.14) into (7.13) yields
d¥  d¢
uz(f, CL,T(],GO) - [C(a’) —€ E - %’ (718)

which indeed does not depend on Ty. Thus a system for
which (7.14) takes place is canonical—the adiabatic and
zero-polytropic processes coincide for it.

VIII. THE THERMODYNAMIC LIMIT:
COINCIDENCE OF THE ADIABATIC
AND ZERO-POLYTROPIC PROCESSES

The probability distribution determines the values of
all thermodynamic quantities. In general the distribu-
tions and the mean values are different for adiabatic and
zero-polytropic processes. However, we will now show
that in the thermodynamic limit the mean values of en-
ergy coincide. In this limit one has £ ~ N, where NV
is the number of particles and % is small; what we will
show is that the difference between the two mean values
is small in the same sense.

For a macroscopic system G(¢, a) is a rapidly increasing
function (typically like e/ with N ~ N); this means that
G(e,a)w,(€,a) is a sharp-peaked function of e for any
fixed a. One has then, to an accuracy of 7{,—,

/Ow Gle,a)w,(c,a)f(c,a) de ~ f(E(a,T),a) (8.1)

for any “sufficiently smooth” function f, since in this
approximation the point of maximum of G(e, a)w,(e,a)
is the mean value E(a,T). Let f(€,a) = u(e,a). Writing

w,(e,a) = ﬁ exp [—%] , (8.2)
where Z(a,T) = J5° G(e,a) exp [—%] de

= exp[—ﬂ%ﬁ], one has
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/0°° G(e,a)w,(€,a)u(e,a) de = Eﬁ /000 deexp [—%] 29% /: G(€',a) de

T 3

Z(a,T) da

T 0

_OF(a,T)
da

This is an exact result. A comparison with (8.1) yields

u(E(a,T),a) ~ —

* d
/0 dﬁa-g

= ‘Z‘(“;"IT)%/OOO de exp [—%] G(e,a) =

OF(a,T)

(exp [— %]) /OE G(€',a)de

T 0Z(a,T)
Z(a,T) Oa

(8.3)

e (8.4)

More accurately, denoting W, (¢, a) = G(e, a)w, (¢, a), writing

W.(c,a) = W.(E, ) exp [—ﬂ] ,

8.5
o~ (8.5)

where F stands for E(a,T), and expanding u(e,a) around € = E, one has

/ooo W.(e,a)u(e,a) de ~ W, (¢,a) |:u(E,a) Aw exp [_(

k3 9%u(E, a)

2 OE?
1 W,(E,a) 8%u(E,a)

=u(E,a) +

=u(E,a) - 2 W, (Ea)  OE2

OE

Considering W, to be a sharp enough function of € means
that x is small enough, that is, QH—WGAE,{E—’Q /W.(E,a) is
large enough so that one can neglect the second term to
get (8.4). Since k is the mean square fluctuation of en-
ergy, the approximation under consideration, in essence,
means that the fluctuation is small compared to the mean
value.

Now let us derive the equation for the mean energy
in an adiabatic process. We expect that in the thermo-
dynamic limit, W(e,a) = G(¢, a)w(e, a) also has to be a
sharp-peaked function (this will be justified later as we
will see the fluctuation to be of the same order as for the
zero-polytropic process). Then the mean value Faq(a) is
to be determined from the equation

R(Egaq,a) =0, (8.7)
where by definition
OW (¢, a)
= — 0 8.8
R(e,a) = 208 (88)
It follows from (8.7) that
dE,
dad = v(Eaq,a), (8.9)
where
_ OR(e,a) [/ OR(¢,a)
v(e,a) = — %a B (8.10)

Substituting (8.8) and using (5.5) and (5.10) to replace
derivatives with respect to a by derivatives with respect

e—;ﬁiff] de + %Lzu(E, D) [7(c - B) exp [—ﬂ] dejl

B2 J, 22

(8.6)

=
to €, we come to

W (Eaq,a) 0%u(E,q,a)

82W (Eaq,a) OE?
SE ad

ad

V(Fad,a) = —u(Faqg,a) —

(8.11)

The second term, being of the same form as in (8.6), may
again be neglected, producing a relative error of the order
#- Now (8.4) may be rewritten as

OF(a,T)
da

u(e,a) ~ —

, (8.12)
T=T(e,a)

where T = T(e,a) is the solution of the equation
E(a,T) = e. Equation (8.9) becomes then

dE.a _ OF(a,T)
da Oa

(8.13)

T=T(Eaa,a)

We recognize here the equation for the mean energy for
a zero-polytropic process (usually referred to as an adia-
batic process), which follows from the second law of ther-
modynamics upon setting dS = 0. Thus, in the thermo-
dynamic limit the mean values of energy for the adia-
batic and zero-polytropic processes coincide. That is, if
the initial distribution for both is (7.1), then

FEaa(a) ~ E(a,T), (8.14)

where

T = Tz(a, ao,To). (815)
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IX. GAUSSIAN APPROXIMATION
AND FLUCTUATIONS

The essence of the Gaussian approximation is as fol-
lows: The density of states G(e,a) being a rapidly in-
creasing function of €, we assume that for all probability
distributions w(e, a) involved, the above-introduced func-
tion W(e,a) = G(e,a)w(e, a), which always has a maxi-
mum at some point E, can be represented with sufficient
precision as

:E_)Z] . (9.1)

W(e,a) = W(E,a)exp [—( or?

In this approximation the mean value of energy is (¢) = E
and the mean square deviation (fluctuation) is

AE = /() — E? = k.

One now calculates x for an adiabatic process in order
to compare it with the known value for a zero-polytropic
one. However, before proceeding let us note the following
point. It follows from the definition of entropy that

(9.2)

S = ~/ W (e,a)In W (e, a) de
0

+ / W(e,a)InG(e, a) de; (9.3)
0
accepting (9.1) and assuming G(e,a) ~ €/, one has
S~ 4+ NmZ, (9.4)
€1 €o

where e and e; are values (in general, a dependent) of
dimensionality of energy. The value of entropy for any
given a is the same for the adiabatic and zero-polytropic
processes. If the corresponding mean values of energy are
ezactly equal, as for a canonical system, then, according
to (9.4), the fluctuations also coincide. But if the rel-
ative difference between the two values is of the order
%, as shown in Sec. VIII, then to compensate for it a
relative difference in x of the order of unity is needed,
as (9.4) shows. We conclude that in general the differ-
ence between energy fluctuations for adiabatic and zero-
polytropic processes should be of the same order as those
fluctuations themselves, i.e., quite significant.
We turn now to the explicit calculation. Let us write
the adiabatic distribution as
w(e, a) = exp [—(e, a)] (9.5)

(considering this as the definition of v) and expand (e, a)
in a point E, which we do not fix for the time being:

B 1/0% .
v(e,a) ~ v(E,a) + —F t3 (E’*’_) s (e — E)*,
(9.6)
where by definition
1_ (‘9_7) (9.7)
T B¢ =B

One then has

(9.8)

For the first two factors the Gaussian approximation can
be used again,

E(a,T)

G(e, a) exp [—%] = G(E(a,T),a) exp 7

X exp [JE;E(_“’T_)P , (9.9

2k2(a, T)

where E(a, f’) is the mean energy in the canonical state
with temperature T and

(9.10)
is the relevant fluctuation [co(a,T) = gljg,’il is the heat

capacity at constant a] [3]. Substituting (9.9) in (9.8),
one sees that if

E = E(a,T), (9.11)
then (9.8) transforms into
W (e,a) = W(E,a) exp{—% [ﬁ
+ (%}) ezg] (e — E)Z}, (9.12)

so that E is the maximum point of W (e,a), E = Eaq(a),
and the fluctuation in the adiabatic process is found to

be
1 8% —1/2
a = - =_ + e .
fad LZ(a, T) (662) ezg]

For a given G(¢,a) one should calculate E(a,T), find
v(€,a) by solving the wave equation, and then there
are two equations (9.7) and (9.11) from which E and T
should be determined, to be substituted in (9.13). On the
other hand, we have learned that E ~ E(a,T,(a,a0,T)));
this means in turn that T ~ T, (a, ag, To), hence the fluc-
tuation in the zero-polytropic process is just

(9.13)

k. = k(a,T). (9.14)
Substituting the above-given approximate values of E
and T in the last two formulas is certainly allowable as it
will produce a relative error still of the order % and not
1 as it would be with (9.4).

To compare Ka,q With <, one has to calculate the second
derivative in (9.13). As before, let us assume the initial
distribution to be of the form (7.1); it follows then from
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(9.5) and (6.4) that

0%y
Oe?
Further, the results of Sec. VIII tell us that x is essen-

tially the dependence E(a) for the zero-polytropic curve.
In other words, if

€ = E(a,0), €= E(ao,bo),

(9.15)

1 (62x(e,a, ag))

s To 9e?

e=FE

6= Tz(a, ag, 00), (9.16)

then x(e,a,a0) = €. Changing € by dep means changing
the entropy by dSp = %euq. Sinée entropy is conserved in
a zero-polytropic process, this will change € in such a way
that dS = % = dSy; hence M%’Zﬁl = %Q and

860 deg g __ %‘200
€

5 86 86
?x(e,a,a0)  F20— 5200 e de

de? 2 62
_ 0 (960 _ 20
T 02 \ g Oe
6o 1 1
62 (ca(ao,eo) " ca(a, 9)) - (927

In our case § = T, 6, = Ty, and substituting (9.17) in
(9.15) and then in (9.13) finally yields

Kad = v/ Ca(GOaTO)T-

This is the second main result of the present paper, to-
gether with (8.14).

If (7.14) is fulfilled, then c,(a,T) = c is a constant, and
(9.10) and (9.18) give the same result, which reflects the
fact that adiabatic and zero-polytropic processes coincide
in this case. But whenever ¢, is a and/or T dependent,
the fluctuations of energy for the two processes are dif-
ferent from each other.

(9.18)

X. SUMMARY AND DISCUSSION

We would like now to recall briefly our argumenta-
tion and principal results. Our starting point was the
statement that in an adiabatic process, when there is no
thermostat, there is no reason to presuppose that the
probability distribution would be canonical, as is implied
in the existing phenomenological theory. Instead, what is
in fact considered in that theory is a zero-polytropic pro-
cess, that is, a polytropic process with zero heat capacity.
The main question that we are addressing in this paper
is whether the probability distributions coincide for adi-
abatic and zero-polytropic processes. In considering this,
the first point is to find the law that the adiabatic distri-
bution obeys. We accept the microcanonical postulate—
the statement according to which a system left by itself
comes into an equilibrium state, in which the probability
of its being in a pure state depends only on the energy of
the latter. One then gets the following picture for an adi-

abatic process: The probability corresponding to a cer-
tain level is constant so far as there are no level crossings,
while probabilities equalize at a crossing. This equaliza-
tion, generally speaking, leads to an entropy increase, so
that an adiabatic process would not coincide with the
corresponding zero-polytropic one (for which dS = 0 by
definition). However, this increase tends to zero together
with the level spacing; therefore in the quasicontinuous
spectrum approximation entropy is conserved for the adi-
abatic process as well. In this approximation, it can be
deduced that the probability distribution obeys a wave
equation, the wave velocity being expressed in terms of
the density of states. By constructing the solution of
this equation in the standard way one sees that the adi-
abatic distribution is canonical (thus coinciding with the
zero-polytropic one) if ¢,, the heat capacity at constant
external parameter, is a and T independent. Such system
is “canonical” in the sense that it keeps the canonical dis-
tribution despite the absence of a thermostat. This holds
in the classical limit for a system with quadratic degrees
of freedom.

For a general case an adiabatic process differs from the
relevant zero-polytropic one. However, it turns out that
in the thermodynamic limit the mean values of energy for
the two cases coincide (their relative difference is of the
order of the inverse number of particles) while its fluc-
tuations differ essentially (the relative difference of the
fluctuation is the same as the change of ¢, in the pro-
cess). This difference in fluctuations should in principle
be observable.

One point that has been left aside in this considera-
tion is the estimate of the process speed necessary for
our conclusions to take place. For the zero-polytropic
process there is the usual condition that the process has
to be quasistatic, which means there has to be enough
time for equilibrium to be established at every moment.
The same has to hold for the adiabatic process; enough
time has to be provided for the equalization of probabil-
ity to be accomplished at each level crossing. Besides,
the conditions of applicability of the adiabatic theorem
have to be fulfilled, which means that the process has to
be slow enough for the state to “follow” the change of
external parameters, in the quantum-mechanical sense.
Provided that all these conditions are fulfilled, we come
to the above-formulated conclusions: In general, the adi-
abatic process and the zero-polytropic process are dif-
ferent; for macroscopic systems this difference manifests
itself in the fluctuations of energy, namely,

Ead(a’ T) = Ez (a’ T)’
Vea(a, T)T

v/ca(ao,To) T for the adiabatic process.
(10.2)

(10.1)

for the zero-polytropic process,
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